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1.  Introduction 

The Simuletta language is a special language developed for the production of a portable Simula 
system. It is used to compile the Simula runtime system to S-Code.

The S-Code definition has had great influence on the design of the Simuletta language. In addition 
to ordinary value and reference variables, so-called name and field variables are defined in 
Simuletta. These correspond directly to the concept of general and attribute addresses in S-Code.

Reference variables as well as field and name variables may be fully or partially qualified by 
specification. As in Simula a qualification may be extended either implicitly by an assignment or 
explicitly. But unlike Simula there is no runtime checking on the legality of such extension.

Unlike most assembly languages, Simuletta contains a number of structured statements such as 
if-statement and case-statement.

Data to be manipulated may be of one of the usual types such as integer, or the information may be 
structured as a record with named components, or even into higher order structures such as linked 
lists or networks. Operations (such as +) are included for the massage of primitive data, while 
pointer and structure manipulating instructions (such as the dot notation) are included to support 
general graph traversion. Data structures and new types are defined as in S-Code using the record 
concept. Types which are defined this way are specified by infix(record'identifier).

The main control structuring tool is the routine concept. A routine is inherently non-recursive, all 
parameter transmissions are by value (but it is possible to transfer pointer values). Unlike other 
languages, Simuletta permits explicit naming of the location, in which the return address is saved, 
so that a routine not necessarily returns to its point-of-call. Routines also establish name hiding: all 
named (identifiers) defined within the routine are invisible from the outside, they lose their meaning
when the routine is left.

A module defines a closed name scope (just like routines). It is, however, possible to selectively 
open the scope, making certains aspects of a module accessible outside the module, while other 
aspects remain hidden. Type definitions, routine identifications, labels, and named constants can be 
made visible in this manner. The inteface module serves as a global area for variables and constants.

1.1  References.

1. ''Portable Simula Revisited''

2. ''Simula Standard''

3. ''S-PORT, Definition of S-Code''

4. ''S-PORT, The Environment Interface''

https://portablesimula.github.io/github.io/
https://github.com/portablesimula/S-PORT/blob/master/doc/S-Port%20The%20Environment%20Interface.pdf
https://github.com/portablesimula/S-PORT/blob/master/doc/S-Code%20Definition.pdf
https://portablesimula.github.io/github.io/doc/SimulaStandard.pdf


1.2.  Terminology.

Atomic unit

A data storage unit. The size is the highest common factor of
the sizes of all the data quantities which will be manipulated
during the execution of a program. The size is implementation
dependent. Atomic units may impose a finer resolution on the
storage than the machine allows. 

Area 

A vector of one or more consecutive atomic units.

Object unit

An area of implementation-defined fixed size; the size will
always be an integral number of machine addressable storage
cells. This is the allocation unit (storage cells may not be
directly usable because of alignment problems).

Quantity

Used with the meaning: something that (at run time) may be
manipulated by the executing program.

Record

An area with a structure imposed by a structured type defined by
a record descriptor.

Object 

A record which is not a component of any record. An object will
always comprise an integral number of object units.

Static quantity
The quantity exists throughout the program execution.

Dynamic quantity

The quantity is created during program execution.

Segment

A contiguous storage area containing machine instructions.

Current program point 

The place which will contain the next target machine instructions

generated is called the current program point.

Constant area 

A storage area used for the allocation of constants. Dependent

upon the architecture of the target machine constants may be

allocated interspersed with instructions ( i.e. in program 

segments) , in a separate storage or elswhere.



1.3.  Language definition.

The Simuletta language is defined by a two-level syntax. This is done to reflect the common 
implementation technique – using a separate scanning preprocessor cooperating with the parsing of 
program text. The first level of syntax defines a grammer for the scanner, while the second level is 
the real language syntax.

The syntax will be described with the aid of metalinguistic formulae. The notation used is BNF (as 
in Simula Common Base Language) with the following extensions:

– Meta symbols are written in lowe case without brackets,
terminal symbols are underlined lower case.

– Alternative right hand sides for a production may be separated by  ::=  as well as  |.

– Productions may be annotated with comments. Whenever the symbol string:
--  < any printable character >*

occures it should be ignored until the end of the line, i.e. It is equivalent to the emty string.

– Part of a right hand side may be enclosed in angular brackets followed by one of the
characters  ?,  *,  or  +  with the following meanings:

<  symbol string >? --  ''symbol string'' is optional, it may occure zero times or once.

< symbol string >* --  ''symbol string'' may occure zero or more times at this point.

< symbol string >+ -- ''symbol string'' must occure one or more times at this point.

Alternatives for the symbol within angular brackets may be separated
by  | , e.g.   < letter | digit >+

– Spaces and line breaks are used simply to separate the symbols of a
production, they haveno other significance.

– Particular instances of a meta-symbol may be given a prefix separated
from the symbol by an apostrophy,  e.g.   Record'identifier.

The prefix (record) has the sole purpose of identifying the meta-symbol (identifier)
in the accompanying description, it has no syntactic significance whatsoever.



2.  The Basic Syntax

A Simuletta program text must be represented according to ISO standard, ISO 646-1973, and 
consists of a sequence of line records. If a line record consists of more than 72 positions, an 
implementation may treat as significant only the first 72 positions. There are two kinds of line 
records; Compiler directives and Program lines.

2.1.  Compiler directive lines.
 
Compiler directives are identified by having a  %  character (ISO code 37) in the first position of 
the line record. Such lines are always taken as compiler control lines and the interpretation of their 
content is implementation dependent.

2.2.  Program lines.

Line records which do not have a  %  character in the first position are taken as Program lines.

The program text consists of a sequence of symbols, comments and spaces. For the purpose of 
including explanatory texts among the symbols, the following comment convention holds:

Whenever the symbol string:

--  <any printable character>*

occurs in a program source text it should be ignored until the end of line,
i.e. It is equivalent to the empty string of symbols.

Whenever the symbol  ;  occures in a program source text it is ignored.
It is only used in the source text for documentation purposes.

The basic symbols which constitutes the program text are:

– Identifiers
– Keywords
– Mnemonics
– Simple Values
– Special symbols

A basic symbol must be contained in a single line record, i.e. It cannot be continued from one line to
the next. The extent of a symbol is decided by a left-to-right scan of a Program line beginning at 
position 1 or at the first position containing a non-space character following an already recognized 
basic symbol, trying to recognize the largest possible string of characters which fits the syntax of a 
basic symbol.

In the remaining part of this document, the words ''program text'' mean the sequence of basic 
symbols obtained by scanning the Program lines excluding the Compiler directives and comments.



2.3.  Basic Symbols.

basic_symbol
::= identifier  |  keyword  |  mnemonic  |  simple_value  | special_symbol

identifier
::=  letter  <  letter  |   digit  |  _  >*

mnemonic
::=  letter  <  letter  |   digit  |  _  >*

keyword
::= AND  |  BEGIN  |  BODY  |  BOOLEAN  |  CALL  |  CHARACTER  |  CONST 
  |  DEFINE  |  DO  |  ELSE  |  ELSIF  |  END  |  ENDCASE  |  ENDIF
  |  ENDMACRO  |  ENDREPEAT  |  ENTRY  |  EXIT  |  EXPORT  |  EXTERNAL
  |  FALSE  |  FIELD  |  GLOBAL  |  GOTO  |  IF  |  IMPORT  |  INFIX
  |  INFO  |  INSERT  |  INTEGER  |  KNOWN  |  LABEL  |  LONG  |  REM
  |  MACRO  |  MODULE  |  NAME  |  NOBODY  |  NOFIELD  |  NONAME  |  NONE
  |  NOSIZE  |  NOT  |  NOWHERE  |  OR  |  OTHERWISE  |  PROFILE  |  QUA
  |  RANGE  |  REAL  |  RECORD  |  REPEAT  |  REF  |  ROUTINE
  |  SYSINSERT  |  SHORT  |  SIZE  |  SYSROUTINE  |  SYSTEM  |  THEN
  |  TRUE  |  VAR  |  VARIANT  |  VISIBLE  |  WHEN  |  WHILE  |  XOR

simple_value
::= integer_number
::= real_number
::= long_rel_number
::= character_value
::= string_value

integer_number
::= < digit >+
::= mnemonic

real_number
::= < digit >*  .  < digit >+
::= < digit >*  <   .  < digit >+  >?  &  < + | - >?   < digit >+

long_real_number
::= < digit >*  .  < digit >+  &&  < + | - >?   < digit >+
::= < digit >*  <   .  < digit >+  >?  &&  < + | - >?   < digit >+

character_value
:= <  '  < any ISO_character except  '  >+  '  >+

string_value
::= <  ''  < any ISO_character except  ''  >+  ''  >+

ISO_character
::= ISO_code
::= any printable character from the ISO alphabet.

ISO_code
::=  !  < digit >+  !



special_symbol
::=  +  |  -  |  *  |  /   |  %
::=  <  | <=  |  =  |  >=  |  >  |  <>
::=  ,  |  .  |  :  |  :=  |  (  |  )

letter
::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|
    a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

digit
::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Letters do not have individual meanings, they are used for forming other items such as identifiers, 
string values etc. Digits are used for forming numbers, identifiers and string values. A special 
symbol has a fixed meaning which for the most part is obvious or else will be given at the 
appropriate place in the sequel. Note that spaces are not permitted inside identifiers, keywords or 
mnmonics.

For keywords, only the upper case versions are given – all combinations of upper and lower case 
letters that spell a word given above are also considered reserved words.

2.3.1  Identifiers.

A symbol is recognized as an identifier if it belongs to the syntax class identifier and it is neither a 
keyword nor defined as a mnemonic.

The length of an identifier is restricted to at most 72 characters. The case (upper or lower) of any 
character is not significant.

The identifiers may be chosen freely, they have no inherent meaning, but serve for the identification
of language quantities  e.g. Simple variables, labels, records, etc.

The same identifier cannot be used to denote two different quantities except when these quantities 
have disjointed scopes ( the scope of a quantity is the set of statements and expressions in which the
declaration of the identifier associated with that quantity is valid).

2.3.2  Keywords.

A symbol is recognized as a keyword if it belongs to the syntax class keyword defined above.  
These are reserved and cannot be used as identifiers or mnemonics. In the remaining part of this 
document keywords are written in underlined lower case.



2.3.3  Mnemonics.

A symbol is recognized as a mnemonic if it belongs to the syntax class mnemonic, and a mnemonic 
definition containing this symbol has already been encountered, and it is not a keyword. These 
mnemonics become reserved and cannot be used as identifiers. After a mnemonic definition is 
encountered during the scan of the basic program text, every occurrence of a particular mnemonic 
signal a substitution in the input stream. Literal'mnemonics are substituted while Macros are 
expanded.

Note that mnemonics are not scope restricted within the current unit of compilation, and 
automatically made visible through module inclusion.

mnmonic_definition
::= macro_definition
::= literal_definition

literal_definition
::= define  literal'mnemonic  =  < literal_value >+
      <  ,  literal'mnemonic  =  < literal_value >+  >*

literal_value  ::=  basic_symbol

Example: (Literal Mnemonics)

define  A=1,B=2,C=3,D=4,E=5,F=6

Thus: range(A:F) X=E;
is changed to: range(1:6) X=5;
during the scan.

Macro Mnemonics.

macro_definition
::=  macro  macro'mnemonic  (  parcount'integer_number  )
     begin  < macro_element >*  endmacro

macro_element
::=  any basic_symbol except  endmacro  and  %

The macro definition determines the substitution schema for the macro expansion processing (see 
below). The macro body will not de analysed when the definition is processed, and nested 
definitions are illegal. The parcount is the number of actual parameters given when the macro is 
called, i.e. zero means no parameters, one means exactly one parameter in the call etc.



Macro expansion.

After a macro mnemonic definition is encountered during the scan of the basic program text, every 
occurrence of that particular mnemonic signals a macro expansion.

macro_expansion
::=  macro'mnemonic  (  < macro_parameter_list >?  )

macro_parameter_list
::=  macro_parameter  <  ,  macro_parameter >*

macro_parameter
::=  basic_symbol
::=  %  < basic_symbol >*  %

The macro expansion should take place by textual replacement in the input stream. When a macro 
expansion is recognized the complete state of the Scanner is saved and the Scanner enters macro 
expansion mode. The corresponding macro definition is identified, and the macro call is replaced     
''textually'' after the following rules:

– All macro body elements are processed in the sequence they occur in the definition.
– If the element is a sequence of basic symbols, these symbols are inserted.
– If the element is a parameter number, the content of the corresponding actual parameter 

is inserted in the same manner.

When the replacement defined above has taken place, the Scanner leaves expansion mode, restores 
the state saved and continues processing with the first inserted symbol.

Example: (Macro Mnemonics)

macro ALLOC(2);
begin %1 := nxt; nxt := nxt + %2;
      if nxt > lim 
      then GARB(%2);

     %1 := nxt; nxt := nxt + %2;
endif;

endmacro

Thus:

ALLOC(%x.y%,%size(array)+pp.lng%)

is replaced by:

x.y := nxt; nxt := nxt + size(array)+pp.lng;
if nxt > lim
then GARB(size(array)+pp.lng);
     x.y := nxt; nxt := nxt + size(array)+pp.lng;
endif;

during the scan.



2.3.4.  Numbers.

Numbers are represented in decimal notation. Integers and decimal numbers has their conventional 
meaning. 

Real numbers may have, and long real numbers always have, scale factors announced by single or 
duble ampersand (&). Scale factors are interpreted as integral power of 10.

E.g.  3&6  stands for 3 times 10 raised to the 6th power, i.e. 3 millions 
         while  &2  stands for 10 raised to the 2th power, i.e. 100

Examples:

Integers:

0 200 083
177 743 7 

Reals

.0 200.84 .083&-02
177. 07.43&8 &7
.5384 9.34&+10 3&-4
0.7300 2&-4 &+5

Long reals:

.5384&&1 9.34&&+10 &&-4
0.730&&6 2&&-4 16&&+5



2.3.5  Character and String Values.

256 different characters are defined (corresponding to an 8-bit representation). The lower half of 
this ordered set is the ISO 646 character set (encoded accordingly), the interpretation of the upper 
half is implementation-dependent.

Within a character (or string) value, any printing character except the character (or string) quote 
represents itself. In order to include the complete ISO alphabet any character may be represented 
inside a string value (or a character value) by its ISO code (decimal notation) and surrounded by 
code quotes (! - ISO code 33). The ISO code cannot consist of more than three digits and must have
a legal value, i.e.  <= 255. If these conditions are not satisfied the construction is interpreted as a 
character sequence. The string quote may be represented as ISO code 34, and the character quote by
ISO code 39.

Examples:

Character value: represents

'A' '!3458!' A!3458!

'!' '2!' !2!

'!2!' The STX character 

String value: represents

''AB'' ''CDE'' ABCDE

''!2!ABCDE!2!'' ABCDE  enclosed in STX and ETX characters

''AB''
''CDE'' ''ABCDE''

''!''  ''33''  ''!'' !33!



3.  General Structure of Simuletta-Programs

simuletta_program
::= interface_module
::= sub_module

interface_module
::= global module'identifier
    begin < < visible >?  decl_in_interface >*  end

decl_in_interface
::= mnmonic_definition
::= global_declaration
::= constant_declaration
::= record_declaration
::= routine_declaration

sub_module
::= module module'identifier
    begin < < visible >?  decl_in_module >*

    < statement >*  end

decl_in_module
::= module_inclusion
::= mnmonic_definition
::= local_declaration
::= constant_declaration
::= record_declaration
::= routine_declaration

main_program
::= begin  < decl_in_module >*  < statement >* end 

A system programmed in Simuletta will in the general case consist of a main program, which 
receive control when the translated system is to begin execution, and several modules which may 
provide type definitions, routine support (in the form of a runtime system, as is the case in portable 
Simula) etc. One particular module, the interface module, is used to define the global data structure,
basic type definitions and parts of the environment interface routines. The module'identifier is a 
system-unique identification for the module. It is used in module inclusions.

Each program or module will contain three main classes of program elements:

– type definitions (record descriptors) govern the structure and manipulation                     
of data quantities.

– data quantity declarations (const, local) control the actual (static) allocation and 
identification of data.

– statements and instructions, possibly grouped in routines, specify (together                  
with the type information) the target machine instructions to be generated.



Rather than compiling a complete program, the Simuletta Compiler can be instructed to compile     
a part of a progran (module) which subsequently will be referenced by another module or a main 
program.

The set of identifiers specified in the visible defines the externally visible attributes of the module. 
Candidates are all global variables, constants, records, profiles, bodies and routines, but not 
variables local to a module. Only program elements specifically mentioned to be visible are 
transferred via the module inclusion given in another compilation unit; the program elements 
defined through an module inclusion cannot themselves be made visible outside the module being 
compiled.

The interface module serves two main puposes:

– it specifies a set of statically allocated variables (the globals)
– it specifies parts of the interface to the system environment.

An interface module is included as any other module with the restriction, that only one particular 
interface module can ever occur in the executing program, i.e. It must be checked that different 
modules do not include different versions of the interface module.

A complete listing of the Simula interface module may be found in (4).

3.1  Global variable declarations.

global_declaration
::= type  globalid  <  ,  globalid  >*

globalid
::= identifier  < system identifier >?  < = value >?
::= identifier  < system identifier >? ( repeat'integer_number )

 < = ( value < , value >* ) >?

Global variable declarations may only occur in the interface module. The global declaration 
specifies static allocation of a variable of the given type. The type will define the internal structure 
of the quantity as well as the set of operations permitted. Each such variable is an object, and may 
thus be addressed either by an object reference or a general reference.

Repetitions
       

A global variable may be defined as a repetition. If the repeat'number is greater than zero a vector  
of identical elements is defined, containing that number of elements and accessed through indexing 
with indices starting at zero. The allocation of the elements is done in such a way that the size of 
each element provides enough information to permit access to one relative to another. A repeat 
number less than one is illegal.

It is important to realise that the repetition concept does not impose any structure upon the quantity 
(as e.g. array declaration does in Simula). Whenever a repeated quantity is selected (by an idetifier) 
the first element is selected directly.



Initialisation.

A global variable may be initialised to a given value. This initialisation will take place before 
execution of the program proper take place. If a global variable is not initialisated, the initial value 
is undefined. Globaly declared variables are not initialized unless initial values are given along with
declarations.

Examples:

integer a,b(4),c(10); range(0:1000) k,l=34; -- k is undefined
    -- l is initialized to 34

real q(2)=(3.14,2.83); ref() x =system CURDRV;

ref(object) d(8); infix(complex) z;

field(integer) i,j; name(ref(object)) dp;

3.2  Local variable declarations.

local_declaration
::= type localid  <  ,  localid  >*

localid
::= identifier  < ( repeat'integer_number ) >?

Local variable declarations may occur in all modules except the interface module. They may also 
occur in the main program. The local declaration specifies static allocation of a variable of the given
type. The type will define the internal structure of the quantity as well as the set of operations 
permitted. Each such variable is an object, and may thus be addressed either by an object reference 
or a general reference.

Local variables have a restricted scope, they are only visible from the inside of the module where 
they are declared, and they cannot br specified visible in the visible list. Local variable may not be 
initialized. However, since they are statically allocated, they do not lose their values when the 
module (or main program) is left. Local variables are similar to own variables i Algol.

A local variable may be defined as a repetition.

Examples:

integer a,b(4),c(10); range(0;1200) k,l;

real q(2) ref() x;

ref(object) d(8); infix(complex) z;

field(integer) j; name(ref(object)) dp;



3.3  Constant declarations.

constant_declaration
::= const  type  constantid  <  ,  constantid  >*

constantid
::= identifier = value
::= identifier ( repeat'integer_number ) = ( value < , value >* )

Constants may be declared in all modules and in the main program. A constant area is created to 
hold the specified value. The type will define the internal structure of the quantity as well as the set 
of operations permitted. Each constant is an object, and may thus be addressed either by an object 
reference or a general reference.

It must be possible to evaluate all values occurring within a named constant at compile-time.

Examples:

const integer a=13,b(4)=(1,2,3,4)

const range(0:255) k=4;

const real q(2)=(3.14,2.83)

const ref(object) d(3)=(ref(a),ref(b),none)

const infix(complex) z=record:complex(re=0.0,im=1.0)

const field(integer) i=field(R.k)

const name(ref(object)) dp=name(x.a(3))



3.4  Inclusion of a module.

module_inclusion
::= insert     module_ident  <  ,  module_ident  >*
::= sysinsert  module_ident  <  ,  module_ident  >*

module_ident
::= module'identifier  <  =  external_id'string_value  >?

This instruction causes the Simuletta Compiler to include a module. The external_id is used to 
identify the module with respect to an operating system. If no external_id is given, the Simuletta 
Compiler will search the module definition library for a module identified by the module'identifier.
If it cannot be found, it is an error.

sysinsert is used for system modules (Simula rts, Simob, etc.), while insert is used for user defined 
modules.

The visible elements of the module (as specified in the visible list) are now brought into the current 
compilation unit.

3.5  Linkage of modules.

The linkage of the executable code will generally be carried out in a manner standard to the target 
system. Some knowledge about the modules must, however, be commucated to the Simuletta 
Compiler: identification and type binding etc. of names external to the program being compiled. 
Such information is procured from a data base (the module definition library) maintained by the 
Simuletta Compiler itself (see appendix D.3). The naming conventions used, the structure of and 
access methods to this data base are highly target system dependent.



4.  Record Definition.

record_declaration
::= record  record'identifier  <  :  prefix'identifier  >?

<  record_info  >?
    begin  common_part  < variant_part >*  end 

record_info

::= info ''DYNAMIC''
::= info ''TYPE''

common_part
::=  <  type  attrid  <  ,  attrid  >*  >*

variant_part
::= variant  <  type  attrid  <  ,  attrid  >*  >*

attrid
::= attribute'identifier  <  (  repeat'integer_number  )  >?

The record'identifier become associated with the record and serves as identification of the record 
withih its scope. Records are used to define a structure upon a class of objects or as generators for 
structured type. Records are also used as building boxes for other record definitions through 
prefixing. A record consists of attributes, grouped together into a commen part possibly followed  
by variants.

Examples:

record complex; begin real re,im end

record R;
begin integer a,b(4); character c(80);

variant infix(complex) z(3);
variant real x,y;

end 

record S : R;
begin variant label x;

variant boolean b; ref() y(0);
end 

 

Note that objects of record S may be interpreted in 4 different ways depending upon which pair     
of variants is selected.

4.1  Prefixing

If specified, the prefix must refer a record without an indefinite repetition. The prefix record may, 
however, contain variants. A record without prefix is said to be defined on prefix level zero, while a 
record prefixed by R is said to be defined on prefix level one higher than the prefix level of R.



4.2  Attributes.

Each attribute definition defines the type of an accessible atribute of the record. There is no inherent
correspondence between the order of the attributes in the record descriptor and the allocation order 
inside a record. However, when the record descriptor is processed by the Simuletta Compiler, an 
attribute reference value will be associated with each attribute identifier defined. These associations 
cannot later be changed, which implies that the order prefix ... common part must be preserved.

The attribute'identifier become associated with the attribute. The scope of these attrubute identifiers 
is the record definition itself. They are only accessible through the so-called 'dot-access' (see 6.1).

An attribute may contain several components which are all of the same specified type. A nonzero 
repeat'number defines the number of components. If no repeat'number is given, one is assumed.      
A repeat'number of zero indicastes that the number of components is indefinite. An indefinite 
repetition in the record descripto must be the (lexically) very last attribute defined, i.e. it occurs 
immediately before end.

4.3 Record information.

The record_info string is used to give information to the Simuletta Compiler on the use of certain 
records. Three classes of records are distinguished, any record descriptor will one of these classes:

– All records used to form structured types which are used in expressions shall contain the 
record info ''TYPE''.

– A small set of records are used as prefixes to every dynamic quantity created by the run 
time system during execution; such types shall contain info ''DYNAMIC''. This 
information may be necessary in order to determine the dynamic size, since the target 
system may prohibit general use of the address space for such objects, e.g. dynamic 
reference should be an even byte address.

– If a record descriptor does not contain (either directly or through prefix) any such 
specification, the record wil not be used for any of the two mentioned purposes.

It may not be necessary for the Simuletta Compiler to utilise the record information fiels; in that 
case the specifications may be ignored and no distinction should be made by the compiler.

4.4  Records with variants.

If several variant parts are given, it specifies alternative interpretations of the record. One particular 
interpretation is obtained by taking all the  common parts together with one selected variant part on 
each prefix level. Thus the number of alternative interpretations of a record is the product of the 
number of varianta parts on each prefix level (counting one if there is no variant part on a particular 
prefix level). The correspondence between pairs of attributes from different variant parts on the 
same prefix level is not defined. Records are always allocated with a size corresponding to the 
largest alternative (at allocation an indefinite repetition cannot occur).



4.5  Allocation order.

The Simuletta Compiler is free to reorder or pack the attributes in any convenient way, as long as 
the above mentioned restrictions are observed.

In summary:

– the order  prefix...common part...alternatives must be preserved,

– once ordered and packed the order is invariant, which means that a                            
prefix cannot be re-packed,

– an indefinite repetition must be allocated at the end of the structure,

– records are always allocated with a size corresponding to the largest                  
alternative (at allocation an indefinite repetition cannot occur).



5.  Types and Values.

type 
   ::= integer
   ::= short integer
   ::= range  (  lower'integer_number  :  upper'integer_number  )
   ::= real
   ::= long real
   ::= size
   ::= Boolean
   ::= character 
   ::= label
   ::= entry  (  < profile'identifier >?  )
   ::= structured_type
   ::= object_reference
   ::= attribute_reference
   ::= general_reference

structured_type
   ::= infix  (  record'identifier  <  :  fixrep'integer_number  >?  )

object_reference
   ::= ref  (  < record'identifier >?  )

attribute_reference
   ::= field  (  < qualifying'type >?  )

general_reference
   ::= name  (  < qualifying'type >?  )

value
   ::= integer_number
   ::= real_number
   ::= long_real_number
   ::= Boolean_value
   ::= character_value
   ::= string_value
   ::= label_value
   ::= routine_value
   ::= structured_value
   ::= object_reference_value
   ::= attribute_reference_value
   ::= general_reference_value

The various types besically denote properties of values. Any data quantity must belong to some 
type. The type will define the internal structure of the quantity as well as operations that may be 
performed upon it. Types are used as generators in global, constant, local or parameter definitions 
and as specifiers in declarations.

The distinction between resolved and non-resolved type is made because of the indefinite repetition,
which may occur in structured types. Such a type cannot be used as a generator, or in further type 
definition, without determining the actual number of elements in the repetition.

Whenever the Simuletta Compiler should perform type checking, neither the actual number of 
elements in such an indefinite repetition, nor the actual range specified for an integer quantity is of 
any significance, unless it is explicitly indicated in the text. A structured type can be extended by 
using prefixing. Such types are not type compatible.



The reference concept corresponds to the intuitive notion of a ''name'' or a ''pointer''. It also reflects 
the addressing capability of computers: in certain simple cases a reference could be implemented as 
the memory address of a stored value.

The type of the value of a particular variable is defined by the declaration of the variable.

Examples:

integer range(0:10000)

real ref()

ref(object) infix(complex)

entry() infix(item:14)

field(integer) name(ref(object))

5.1  Integer types.

The type declarations integer, short integer and range serves to declare identifiers representing 
variables capable of containing a subset of the integer values with a machine dependent range and 
representation. The full integer range must correspond at least to a 16-bit representation, but if 
possible it should be at least 32 bits.

Quantities of type integer may be restricted in range. A range has a contiguous value domain which
is part of the domain for integer. The motivation for range is storage economy for variables with a 
resticted value domain.

The Simuletta Compiler allocates a range to a storage unit which at least comprises the closed 
interval  [ lower...upper ] specified for the range. The value domain of a range is system dependent 
and defined to be the domain of the storage unit allocated to the range.

The short integer correspond to a range specified with a suitable interval, at least including               
[ -32000,32000 ], and (almost) symetrical around zero.

Although ranges occur in arithmetic expressions, there is no arithmetic operations (or relations) 
defined on ranges. It is the responsibility of the Simuletta Compiler to convert to integer before the 
operation is performed, and to convert to range before assignment to a range. One consequence of 
this is that intermediate results never can be range restricted.

It is required that the Simuletta Compiler checks domain overflow for assignments to ranges 
originating from short integers, while such a check is not required for other ranges. The Simuletta 
Compiler may choose to always generate domain checks on assignment, hence treating any range as
it must treat short integer.

Integer numbers are of type integer.



5.2  Reals.

The type declaration real serves to declare identifiers representing variables capable of containing a 
subset of the real values, which is representable on the target machine. All real numbers are of type 
real.

5.3 Long reals.

The type declaration long real serves to declare identifiers representing variables capable of 
containing a subset of the real values with greater precision than the real values. The range of long 
real may differ from that of real. Restricted implementations may choose to ignore the distinction 
between real and long real, treating both as real. All long real numbers are of type long real.

5.4  Booleans.

The type declaration Boolean serves to declare identifiers representing variables capable of 
containing the values true or false.

Boolean_value
::= true
::= false

5.5 Object size.

The type declaration size serves to declare identifiers representing variables capable of containing 
object size values. Values of this type describe object sizes and distances between objects, measured
as the distance between two machine addresses. They may be represented as integers (with sign), 
but they are not compatible with integer. The empty size (correspomding to zero) is nosize.

The size of a record wil be the size of the prefix plus the size of the common part plus the size of 
the ''largest'' variant part, that is the alternative occupying the largest number of object units. If the 
record contains an indefinite repetition the size is measured as if this attribute is absent.

size_value
::= nosize
::= size  (  record'identifier  )
::= size  (  record'identifier  :  integer'expression  )

The last form is used for records containing an indefinite repetition. The result is the size of the 
record obtained by using the value of the integer'expression insted of the indefinite repetition. The 
record referenced must contain an info ''DYNAMIC'', and it must contain an indefinite repetition, 
otherwise: error.

5.6  Characters  .

The type declaration character serves to declare identifiers representing variables capable of 
containing the character values (see sect. 2.3.5). 



5.7  Structure types.

The type declaration infix(R) serves to declare identifiers representing variables capable of 
containing structured values.

Any defined record may be used as a pattern of a structured type. If the record contains an idefinite 
repetition, this repetition must be resolved through the use of the fixrep construction, thereby 
determining the actual number of elements in the repetition.

For every record R without an indefinite repetition there is associated a structured type infix(R).

For every record I which contain an indefinite repetition there is associated a set of structured types 
infix(I:n)  n=1,2, ... The value 'n' resolves the indefinite repetition in the record I.

Subordinate types.

A structured type S2 is said to be ''subordinate'' to a second structured type S1 if and only if one of 
the following situations applies:

– S1 is generated by the record R1 without fixrep,
S2 is generated by the record R2 (with or without fixrep)
and R2 have R1 in its prefix chain.

– S1 is generated by the record R with fixrep n2,
S2 is generated by the same record with fixrep n1
and  n1 >= n2

Informally speaking, S2 is subordinate to S1 if S2 is an extension of S1.

Strctured Values.

Structured_value
   ::= record  :  record'identifier  (  attrvalue < ,  attrvalue >*  )

attrvalue
   ::= attribute'identifier  =  value
   ::= attribute'identifier  =  (  value  <  ,  value  >*  )

The attribute'identifier defines which attribute is to be of the associated value, i.e. The sequence 
need not be the same in the structured type and in the record value.  Strict type correspondence is 
required between an attribute and the associated value.

All attribute identifiers of the record must occur at most once, but it is legal not to associate to some
attributes (they are associated default values according to the table in sect. 9.1).

An indefinite repetition is resolved by the number of values in the corresponding attribute value list.
The order of the values correspond to the indexing order, i.e. Attribute(0) takes the first value in the 
list, etc.

If the record contains alternative parts, a specific alternativ is selected by naming one of its 
attributes. Once an alternativ has been selected, it is an error if an attribute from any other 
alternative occur. If no alternative is selected then no alternative part is produced.



Examples:

record:complex ( im = 0.137 , re = -2&-2 )

record:template
  ( x = ( record:complex ( im = 1.0 , re = 0.0 ) ,

    record:complex ( im = 0.0 , re = 1.0 ) ) ,
    y = 1327 , a = ( name(b), name(b) , noname ) )

5.8  Strings

It is adopted as a convention that the interface module should contain the record definition:

record string; info ''TYPE'';
begin name(character) chradr; integer nchr end;

The type infix(string) then becomes available in every Simuletta programs.

String values.

String values are introduced by means of a syntactical transformation of the source text:

Let S be an occurrence of a string value in the source text, and let S consists of the
characters  C1, C2, ... ,Cn. The occurence of the string S is replaced by:

record:string(chradr=name(<id>),nchr=<n>)

and a new constant is added among the declarations in the program:

const character <id>=(C1,C2, ... ,Cn)

where <id> is an identifier not occuring elsewere in the text and <n> is the number of
characters in S.

5.9  Data reference types.

Addresses in Simuletta are designed to permit the description of objects which are arranged in 
implementation and machine-dependent ways. In particular it is envisaged that some Simuletta 
Compilers may pack information into available storage in ways which require to be descibed using 
complex addresses. These considerations have led to the following types of address:

5.9.1  Object references.

Associated with an object there is a unique ''object reference'' which identifies the object. And for 
any record R there is an associated reference type ref(R). A quantity of that type is said to be 
qualified by the racord R. Its value is either an object address, or the special value none which 
represents ''no object address''. The qualification restricts the range of values to objects records 
included in the qualifying record. The range of values includes the value none regardless of the 
qualification.



An object reference is said to be ''subordinate'' to a second object reference if the qualification of the
former is a subrecord of the record which qualifies the later.

The type ref() is an unqualified object reference. All object references are subordinate to the 
unqualified one.

Object Reference Values

Object_reference_value
::= none
::= ref  (  object'identifier  )

The value is the object reference of the global or constant quantity identified. none refers to no 
object unit. The type of the value is ref()  i.e. an unqualified object reference.

5.9.2  Attribute references.

Associated with an attribute of an object there is a unique ''attribute reference'' which identifies that 
attribute relatively to the object. An attribute reference correspond to the intuitive notion of a 
reletive pointer (offset) to an attribute within an object.

For any type T there is associated an ''attribute reference'' type field(T). A field(T) quantity is said  
to be qualified by the type T. Its value is either an attribute reference, or the special value nofield 
which represents ''no attribute address''. The qualification restricts the range of values to attribute of 
that specific type or a subordinate type in the case of object references. The range of values includes
the value nofield regardless of the qualification. The type field() is unqualified, thus the range of 
values is not restricted in this case.

An attribute reference is said to be ''subordinate'' to a second attribute reference if the qualification 
of the former is subordinate to the qualification of the later. All attribute references are subordinate 
to the unqualified one.

Attribute Reference Values

attribute_reference_value
::= nofield
::= field  (  record'identifier  <  .  identifier  >+  )

The value is the attribute reference.
The type of the value is  field( type of attribute ).



5.9.3  General references.

Associated with a variable there is a unique ''general reference'' which identifies that variable. A 
general reference correspond to the intuitive notion of a direct pointer to a variable. A general 
reference carry necessary information to make it it possible to convert it into a pair:

general reference  -->  [ object reference , attribute reference ]

For any type T there is associated a ''general reference'' type  name(T).

A  name(T) quantity is said to be qualified by the type T. Its value is either a general address, or the 
special value noname which represent ''no general address''. The qualification restricts the range of 
values to variables of that specific type or a subordinate type in the case of object references. The 
range of values includes the value noname regardless of the qualification. The type name() is 
unqualified, thus the range of values is not restricted in this case.

An general reference is said to be ''subordinate'' to a second general reference if the qualification of 
the former is subordinate to the qualification of the later. All general references are subordinate to 
the unqualified one.

General Reference Values

general_reference_value
::= noname
::= name  (  variable  )

The value is the general address of the variable.
The type of the value is  name( type of the variable ).

                           Correspondence between the different data references.



5.10  Instruction address types.

The type declaration label serves to declare identifiers representing variables capable of containing 
label values. Labels carry the address of a program point. They are independent of the other types  
of address.

nowhere designates no program point.

The type declaration entry serves to declare identifiers representing variables capable of containing 
entry point values. An entry point value carry the address of a routine body, a peculiar routine 
cannot occur. They are independent of (and inconvertible to) the other address types.

nobody designates no entry point. 

label_value
::= nowhere
::= label'identifier

entry_value
::= nobody
::= entry  (  routine'identifier  )

Labels defined withih a routine body cannot be used to form label values.



6.  Expression.

expression 
::= factor
::= unary_operator  factor
::= expression  binary_operator  factor
::= if Boolean'expression then expression else expression 
::= type_conversion

factor
::= value
::= variable
::= routine_activation
::= (  expression  )

unary_operator
::=  + | - | not

binary_operator
::=  + | - | * | / | rem 
::=  and | or | xor
::=  <> | < | <= | = | >= | >

Every expression is of a certain type. The type of a factor is the type of the value, variable, etc.      
In binary operations the type of the result is derived from the actual operation and the type of the 
operands. Both brances of an conditional expression must be of the same type, which become the 
type of the expression.

NOTE: The normal operator precedence rules do not hold.
Any expression is evaluated stricly from left to right, i.e.:

a*b+c  =>  (a*b)+c i.e.  get a, get b, do *, get c, do +
a+b*c  =>  (a+b)*c i.e.  get a, get b, do +, get c, do *

Note:   Evaluation of an expression can result in an interrupt situation at run time. Handling of such
situations are treated in more detail in the document ''The Environment Interface'' (4).

Examples:

x x*y
34 a/(a+1)
sqrt(name(x)+field(f)))) (x>=4) and (y+z=0)
not ((a*b+c) = d) x = 1.32&-2
-x (a+(b+c)) > (d+e)
a*b + c if a>0 then b*(c+d) else e



6.1  Variable.

variable
      ::= simple_variable  <  (  index'expression  )  >?

simple_variable
      ::= identifier
      ::= var  (  general_reference'expression  )
      ::= object_reference'expression  .  identifier
      ::= structured_type'expression  .  identifier

Examples:

a a(i+4) qua R.x(P(i+j)*2)
f(a,b,c) var(n+o)

Any variable may be supplied with an index expression of type integer. In this case the designated 
quantity is treated as a repetition. Let V be a simple_variable, the the first element of a repetition 
may be accessed by  V  or  V(0), the second by  V(1) and so on. There is no index checking so the 
legality decision is left to the user.

Dot access.

The 'dot access' is used in two different ways, to remotely access object attributes, or to select 
attributes within strucktured types.

Let X be an expression of type ref(R), then the remote identifier  X.A  is valid if  A  is an attribute  
of R. If the value of X is none, then the remote access is undefined, i.e. It is illegal but there is no 
runtime checking on it. The use of qua enables qualification extension or restriction for remote 
access. The phrase  'X qua Q'  means 'change the qualification of X to Q in this context. The remote
identifier  X qua Q.A  is valid if A is an attribute of Q and either R is subordinate to Q or Q is 
subordinate to R.

Let Y be an expresion of type  infix(S),  then the selected identifier  Y.B  is valid if B is an attribute 
of S.

The type of a remote or selected identifier is the type specified for the attribute.

Dynamic Access.

Let V be an expression of type  name(T), then the construction  var(V)  is used to access the  
content of the variable referenced by V. The type of  var(V)  is T. To cover the case of unqualified 
references, the optional qualification setting is introduced, thus the type of  var(V qua U) is U.

Exstreme care should be executed when using this access method because no validity checking is 
performed. For example, the assignment:

var( name(i) qua real ) := 13.4;

where 'i' is declared integer, makes it possible to assign a real value into an integer variable 
without conversion. The meaning of this is highly implementation dependent.



Dynamic Quantities.

The addressing of dynamic quantities poses a problem as their descriptors are incomplete. Dynamic 
quantities are continually being created and destroyed during program execution, and the Simuletta 
Compiler is not in control of their creation and allocation in storage; this task is the responsibility of
the user.

In order to complete the definition of descriptors of dynamic objects the Simuletta Compiler must 
provide a mechanism for associating object references ( to be generated at run time) with natural 
numbers or object indices known at compile time. The scheme adopted should give complete 
freedom til the Simuletta Compiler in choosing an appropriate implementation strategy; this can 
have a considerable effect on run-time performance.

The following convention is adopted:

Every Simuletta program acts as if the following global variable was defined:

ref() display(M)

where M is an implementation defined integer value greater than 7.

The well-known implementation technique using a ''display vector'' being continually updated 
during program execution is, for instance, catered for in this proposal.

Accessing attributes of dynamic objects is carried out by using remote identifiers, e.g.

display(4) qua entity.pp

6.2  Arithmetic Operators  ( +  -  *  /  rem). 

The binary operators  +,  -,  *,  and / are defined for integer, real and long real operands. Both 
operands must be of the same type, which becomes type of the result. The binary operator rem is 
only defined for integer operands. Mixed type arithmetic expressions i.e. Expressions with a 
mixture of integer, real and long real operands, are illegal. All arithmetic on subranges of integer 
should be performed in full integer arithmetic.

Reminder is defined as:    x rem y   ==  x – (x/y)*y

6.3  Boolean Operators ( and, or, xor, not )

The logical operators and, or, xor and not  are only defined for Boolean operands, always giving a 
result of type Boolean. There is no guarantee that all expressions involved are evaluated.



6.4  Relational Operators ( < , <= , = , >= , > , <> )

The operators  <= ,   >=  and <> stands for  less than or equal, greater than or equal,  and unequal 
respectively.

Both operands must be of the same type. The result obtained by applying one of the relational 
operators is always of tye Boolean. The operators  =  and  <>  are defined for all types, while the 
operators  < ,  <=  ,  >=  and  >  are defined for all arithmetic types as well as characters and object 
references.

Comparison between character values is done according to the ISO 646 code (i.e. The 
corresponding integer values are compared). Assuming an integer representation of size values, 
comparison is performed by comparint the numerical values of this representation. Reference values
are compared by comparing the corresponding machine addresses (regarded as ordinal numbers). 
Comparison between quantities of structured types is performed component by component.

  <   <=    =   >=    >   <>

Boolean    +    +

character    +    +    +    +    +    +

integer    +    +    +    +    +    +

real    +    +    +    +    +    +

long real    +    +    +    +    +    +

size    +    +    +    +    +    +

ref    +    +    +    +    +    +

field    +    +

name    +    +

label    +    +

entry    +    +

infix    +    +

     Table of legal relational operations

       ( + marks valid relation for the designated type )



6.5  General Reference Expression.

The addition operation is also defined for certain reference types:

ref(..)  +  field(T) producing a result of type name(T)
name(..) +  field(T) producing a result of type name(T)

Case 1.  ref(..)  +  field(T)  =>  name(T)

Let x be an expression of type ref(R), and let y be an expression of type field(T), then the
expression  'x+y'  is defined to be the general reference of type name(T) which identifies 
the attribute referenced by y in the object referenced by x.

Case 2.  name(infix(..))  +  field(T)  =>  name(T)

Let x be an expression of type name(infix(S)), and let y be an expression of type field(T), 
then the expression  'x+y'  is defined to be the general reference of type name(T) which
identifies the attribute referenced by y in the attribute referenced by x.



6.6  Object Reference and Size Expression.

The addition and subtraction operations are also defined for:

ref(..)  +  size     producing a result of type  ref()
ref(..)  -  size     producing a result of type  ref()
ref(..)  -  ref(..)  producing a result of type  size

Case 1.   ref(..)  +  size  =>  ref()

Let x be an expression of type ref(R), and let y be an expression of type
size, then the expression  'x+y'  is defined to be the unqualified object
reference which is allocated y object units after the start of x.

Case 2.   ref(..)  -  size  =>  ref()

Let x be an expression of type ref(R), and let y be an expression of type
size, then the expression  'x-y'  is defined to be the unqualified object
reference which is allocated y object units before the start of x.

Case 3.   ref(..)  -  ref(..)  =>  size

Let x and y be object reference expressions of type ref(R), then the 
expression  'x-y'  is defined to be the distance from x to y.
The type of the result is size.



6.7  Type Conversion.

type_conversion
::=  expression  qua  type

The value of the expression is converted to the specified type. Not all conversions are valid, see the 
table below. An attempt to perform an invalid conversion is an error

The conversion performed will in some cases be illegal because of the actual value; one example 
would be to try to convert a real to an integer, if the actual value of the real is outside the range of 
integer. Such errors should be checked for at run time, in cases where they can occur. These 
conversions are marked  ?  in the table below.

Conversion from name to ref means; take the object reference part of the general reference and 
return as result. The type of the result is ref() .

Conversion from name to field means; take the attribute reference part of the general reference and 
return as result. The type of the result is field().

An object reference may be converted to a general reference. In that case the object reference is 
extended with an enpty attribute reference and the pair comprises the result. The type of the result  
is name(), i.e. an unqualified general reference.

real (long real) to integer conversion is performed after the rule: I = entier ( R + 0.5 )
(Entier: the gratest integer not grater than the argument)

to:       character        long real
 |       integer  |      field
 |       |     real |      |      ref 

     from:  |       |      |      |      |      |      name
 character  +

 integer  ?  ?  ?

 real  ?  ?

 long real  ?  ?

 ref  +

 name   +  +

     Table of legal conversions.

     +    Always legal and exact

     ?    The lagality depends on the actual value being converted. Loss of
accuracy is not considered an error when converting from integer
values to real values. In other cases execution-time checks may have
to be inserted in order to avoid loss of information due to truncation.



7.  Statements.

Statement
::= if_statement
::= assignment_statement
::= goto_statement
::= routine_activation
::= built_in_routine
::= repeat_statement
::= case_statement
::= label'identifier :

The units of operation within the language are called statements. They will normally be executed 
consecutive as written. However, this sequence of operations may be broken by goto statements, 
shortened by if and case statements, and legthened by repeat statements.

In order to make it possible to define dynamic succession, labels may be specified among the 
statements.

7.1  Goto Statement.

goto_statement
::= goto  label'expression

A goto statement interrupts the normal sequence of operations, by defining its sucessor explicitly by
the value of a label expression. The expression following goto must be of type label.

No goto statement can lead from the outside and into a routine body (but the opposite is legel).

A goto statement is undefined if the label expression eveluates to nowhere.

NOTE: Every label defined within a routine body must have one and only one
 corresponding goto statement in the same routine.  

Labels defined within a routine body cannot be used to form label values.

Examples:

goto L

goto if b then x.L(3) else w(4).S



7.2  Assignment Statement.

assignment_statement
::= < variable  := >+  expression 

Assignment statements serve for assigning the value of an expression to one or several destinations. 
Assignment to a routine import parameter is not alloed. If assignment is made to an indexed 
variable, the value of the index expression must lie within the appropriate repetition bounds. 
Otherwise the action of the program becomes undefined. However, there is no runtime checking on 
the legality of a particular index value.

The assignment process is understood to take place as follows:

– The expression is eveluated

– Then for each destination, starting with the rightmost:

– The destinations which are of a certain degree of complexity
 are evaluated, e.g. indexing, dot access, dynamic access.

– The value of the expression is assigned to the  destinations.

Example:  The assignment statement: x.y := x.y.z := w

      is evaluated as: temp := w;  x.y.z := temp;  x.y := temp;

The type of all destinations must be same as the type of the expression, except for reference types 
which are treated in detail below.

Reference Assignment.

Let T be the type of a particular  destination, and let T' be the type of the expression, then the 
assignment is valid if

– T is equal to T'
– or T is subordinate to T'
– or T' is subordinate to T

The last case involves qualification extension. There is no runtime check on the validity of an 
qualification extension implied by an assignment.

Examples:

x := y + z

x.b := var(n+o qua real) := f(a,b,c)

x(2).b(4).c.d := q



7.3  If Statement.

if_statement
::= if  Boolean'expression  then  < statement >*
       <  elsif  Boolean'expression  then  < statement >*  >*
         <  else  < statement >*  >?   endif

If statements cause certain statements to be executed or skipped depending on the value of certain 
Boolean expressions.

The operation of the if statement starts by evaluating the Boolean expression following if. If the 
value is true, then the statements following then are executed while all other statements are 
skipped.

If the value of the Boolean expression is false, then control is passed to the first elsif, if any. All 
elsif branches are then treated in sequence until an Boolean expression evaluates true, in which 
case the statements following the corresponding then is executed while all other statements are 
skipped.

If no other statements are executed and an else branch is present, the statements following else are 
executed.

Boolean expressions are evaluated as they are necessary in order to determine the further flow of 
the program control.

Examples:

if b then a:=a+1 endif

L: if if x = none then false else x.a > 0
   then T: repeat x:=x.suc while x <> none do p(x) endrepeat
   else x:=z.suc; goto T endif

   if k=1 then ds:='a'
elsif k=7 then ds:='f'
elsif k=3 then ds:='r'
elsif k=9 then ds:='q' else ds:='X' endif



7.4  Repeat Statement.

repeat_statement
::= repeat  < statement >*
       while  Boolean'expression  do  < statements >*  endrepeat

Repeat statements cause certain statements to be executed repeatedly.
The expression controlling repetition must be of type Boolean.

The repeat statements

repeat  S1  while  B  do  S2  endrepeat

is equivalent to

L:  S1  if  B
  then  S2; goto L
  endif

where L is an identifier not occuring elswhere in the program text. 

Examples:

Loop: i:=0; j:=101;
repeat i:=i+1; j:=j-2 while i < j
do  A(j):=A(i); A(i):=A(i)+A(j+1) endrepeat

repeat while x <> none do x.a:=P(x) endrepeat

repeat Q(t) while t > eps do endrepeat



7.5  Case Statement.

case_statement
::= case  lower'integer_number  :  upper'integer_number

(  integer'expression  )
<  when_list  :  < statements >*  >+
< otherwise  < statement >*  >?

    endcase

when_list
::= when  which'integer_number  <  ,  which'integer_number  >*

The case statement causes certain statements to be executed or skipped dependig on the value of an 
integer expression (the selector). This value is range bounded to the specified case interval 
(lower,upper), but there is no runtime check on this.

To each group of statements in the case statement one or more 'which numbers' is attached. All 
'which numbers' must be different and taken from the case interval.

The operation of the case statement starts by evaluating the selector. If this value is attached to  
some statement group, that group of statements is executed while all other are skipped.

If the selector value is not attached to any group, the statements following otherwise are executed.  
If there is no otherwise group, then no action is performed.

Examples:

case 7:13 (i)
when 9,11:   case 1:3 (j)

 when 2:   A(j):=A(j+)
 otherwise A(j):=1;
 endcase

when 7,8,10: x.a:=P(i)
when 13:     x.a:=x.b:=0
endcase

define north=1,west=2,south=3,east=4;

. . . .

case north:east (direction)
when north: k:=draw(U); progress(k)
when east,west: progress(k+1);
when south: k:=draw(-U); progress(k-1);

endcase



8. Routines.

routine_declaration
::= profile_declaration
::= body_declaration
::= singular_routine
::= known_routine
::= system_routine
::= external_routine

Routines in Simuletta corresponds to subroutines in other languages but with certain restrictions:

– All parameters are passed to and from the routines by value.
       Import parameters are restricted to be 'read only'.

– Routines are not recusive.

– The return address may be made available to the routine (by means of an exit definition),
thus allowing the return address to be changed by the routine itself.

The profile defines the parameters and exit descriptors for the routine, while the body defines the 
local variables as well as the statement sequence to be executed when the routine is activated. Each 
routine must have exactly one routine profile associated with is, whereas a profile may be 
associated with several routine bodies. The same profile shall not be associated with more than one 
body in any dynamic sequence of routines calling routines, since this would imply re-use of the 
(possibly static) allocation record defined by the profile.

8.1  Routine profiles.

profile_declaration
::= < global  (  identifying'string_value  )  >?

profile profile'identifier
parameter_specification  end 

parameter_specification
::= < import  <  type  localid  <  ,  localid  >*  >+  >?
    < export type identifier  >?
::= < import  <  type  localid  <  ,  localid  >*  >+  >?
    < exit label identifier  >?

localid
::= identifier  <  (  repeat'integer_number  )  >?

The import (input) parameters and the export (return) parameter are transmittet 'by value'. The 
import parameters are restricted to be 'read only'. Each import (export) definition will declare a 
quantity local to the routine body (bodies) later associated with the profile. The order in which the 
parameters are given in the profile will define the order of the actual parameters in a routine 
activation. 



An import parameter defined as a repetition must correspond to a list of expressions in the call, the 
count specifies the maximum permissible number of values to be transferred. Note that the actual 
count is not transferred, it may be defined as a separate import parameter.

An exit definition identifies the area containing the return address of the routine. The exit is of type 
label. It becomes accessible to the routine exactly as any other local quantity, and makes it possible 
for the routine to change its return address. Such a routine cannot be called from other routines.

Interface profiles (global profile)  may occur in the head of the interface module only. The profile 
becomes visible from the runtime environment through the identifying string. Every profile 
associated to a routine address evaluation, which is an actual parameter to a system routine, should 
be specified as an interface profile. In fact, the interface specification is redundant, but can be used 
to simplify code production for routine address values.

8.2  Routine bodies.

body_declaration
::= body  (  profile'identifier  )
        routine'identifier  routine_body

routine_body
::= begin  <  local_variable  >*  <  statement  >*  end 

local_variable
::= type  localid  <  ,  localid  >*

A routine body consists of local variables and a sequence of statements to be executed when 
activated. No quantities defined in the body are visible outside that body. The initial values of the 
local variables when entering a routine body are undefined.

The routine'identifier identifies the routine body and is used in routine activation, while 
profile'identifier connects the body to the relevant routine profile.

Examples:

profile P;
   import integer a,b(20); label l;
   exit label x;
end 

body(P) R;
begin integer i; i:=1;

repeat i:=i+1 while i<a do b(i):=b(i-1)+b(i) endrepeat
x:=l;

end;



8.3  Singular routines.

singular_routine
::= routine  routine'identifier
        parameter_specification  routine_body

Singular routines are introduced to make it possible to define a routine in one construction instead 
of being forced to define both a profile and a routine body.

Example:

routine R;
   import integer a,b(20); label l;
   exit label x;
begin integer i; i:=1;

repeat i:=i+1 while i<a do b(i):=b(i-1)+b(i) endrepeat
x:=l;

end;

8.4  Peculiar routines.

Peculiar routines (known, system and external) are introduced to permit the Simuletta Compiler to 
handle each one in the most convenient system- and routine- dependent manner. The routine 
identifier specified will be used to refer to the routine in routine activation.

All peculiar routines are identified by an identifying string. The string contain at most 6 characters 
with the case of any character being insignificant (e.g. 'a' is equivalent to 'A'). All identifying strings
for peculiar routines contain only alphanumeric characters, the first of which is a letter.

8.4.1  Known routines.

 known_routine
::=  known  (  identifying'string_value  )  routine'identifier
        parameter_specification  routine_body

A known routine has a body defined in Simuletta. The Simuletta Compiler may know the working 
of the routine and may replace the body with an optimised code sequence. It is intended to be used 
in cases where a standard Simuletta routine will be in dager of being inefficient in some 
implementations, or when the routine call can be replaced by an in-line code sequence at each call.

Example:

known(''RUT1'')  Rk;
import ref(prototype) pp; exit label x;
begin range(1:10) bl;

...  statements  ...
x:= ...

end 



8.4.2  System Routines,

system_routine
::=  sysroutine  (  identifying'string_value  )  routine'identifier
        parameter_specification  end 

System routines provide the interface to the runtime environment of the program, or they represent 
routines which are impossible to program in Simuletta (or potentially prohibitively inefficient in all 
implementations). Thus no body will be given. Such routines (e.g. date_and_time) are typically 
provided by the operating system on the target machine, and may require special intervention from 
the Simuletta Compiler, since the calling conventions and parameter passing mechanisms will be 
system-dependent.

Example:

sysroutine(''DATTIM'') date_and_time;
import infix(string) item; export integer filled end 

8.4.3  External Routines.

external_routine
::=  external  (  nature'string_value  , identifying'string_value  )
       routine'identifier  parameter_specification  end 

External routines are routines written in other languages. The exact nature of the routine is specified
by the nature string. External routines are implementation dependent.

Example:

external(''FORTRAN'',''SQRT'') sqrt
import real x; export real result end;



8.5  Routine Activation.

routine_activation
::= routine'identifier  <  argument_list  >?
::= call  profile'identifier ( entry'expression ) < argument_list >?

argument_list
::= ( argument  < , argument >* )

argument
::= expression
::= ( expression < , expression >* )

A routine activation serves to call for the execution of a routine body. First the profile is connected; 
this will provide information about the number and types of the parameters. Then the parameter 
values are evaluated and transferred, and finally the actual routine to activated is connected, either 
explicitly by giving the routine'identifier or implicitly by evaluating the entry'expression.

Each argument correspond to an import parameter. If several values are to be transmitted to a 
parameter defined as a repetition, then a list of expressions must be used for that argument. Type 
checking during parameter transmission follows similar rules as given for the assignment statement 
(see sect. 7.1).

Examples:

R(10,if b then chr(a+3) else c,P)

call P(if b then E else x.r(2))) (x,y)

Q(a,b,(1,4,-3))

 



9.  Standard Routines and Functions.

built_in_routine
::= object_initialisation
::= temp_routine

built_in_function
::= temp_function

9.1  Initialisation of Allocated Areas.

object_initialisation
::= zeroarea (  object_reference'expression  ,  

     object_reference'expression )

::= initarea (  record'identifier  ,  object_reference'expression )

::= dinitarea (  record'identifier , fixrep'integer_number   , 
     object_reference'expression )

For the purpose of giving dynamically allocated areas initial values, three standard routines are 
defined. These routines will allways be used in the following manner:

– when an area has been allocated by the system environment, or when a possible garbage 
collection has returned free storage, the area(s) will be zero-filled by 'zeroarea',

– when a particular area has been acquired (somehow) to be structured by some type, one 
of the routines 'initarea' or 'diniarea' is issued.

This usage pattern must be enforced by the user, i.e. when 'initarea' is to be evaluated the Simuletta 
Compiler may assume that the area to be initialised has been zero-filled. Thus an implementation 
may choose to realise either 'zeroarea' or the iniarea-pair, or it may choose a mixed strategy, zero 
filling the area ('zeroarea' implmented) and partly implementing '(d)initarea' for those components 
which do not have a zero representation. It should be obvious that the complete implementation of 
all will be redundant and will probably lead to considerable runtime overhead.

   zeroarea(x,y): The area between x and y (x included, y not) wil be zero-filled.

   initarea(R,x): The structure of R is imposed upon the area, and the area is initialised
according to the table below. Only the common part of an instance of a 
structure will be initialised, ignoring both the prefix and any variant part(s).
The structure is initialised component by component according to the table
below.

   diniarea(R,fix,x): The value of 'fix' is used to resolve the type, i.e. fixing the number of
elements in the indefinite repetition, following that the evaluation proceeds
exactly as for 'initarea'.

Important Note: A possible prefix part or any variant parts will never be altered by '(d)initarea'.



     Area initialisation values

type: initialised to:

Boolean false
Character NUL (ISO repr 0)
integer 0
real 0.0
long real 0.0&&1
size nosize
field nofield
ref none
name noname
label nowhere
entry nobody
infix(R) - each attribute init. as above.

Note: If these values are represented as zero and if 'zeroarea' is implemented, the routines
'initarea' and 'dinitarea' may safely be ignored !

9.2  Intermediate Results.

temp_routine
::= init_pointer( object_reference'expression )

 ::= set_pointer( object_reference'expression )

temp_function
::= max_temps -- resulting type: size
::= get_pointer -- resulting type: ref()

During the S-Compilation the compile stack will regularly contain items, which describe partially 
evaluated expressons such as e.g. incomplete address calculations. The execution of the 
corresponding machine instructions will, at runtime, give rise to intermediate results; of necessity 
these must be held in some form of anonymous storage, 'the temporary area'. The actual 
implementation of this area should be highly target machine dependent, thus the machine registers 
may be used if a sufficienly large number of registers is available.

In full S-Code the intermediate results are copied between the temporary area and some object at 
certain places in the code. Such code are e.g. generated by the Simula Front-end Compiler.

To be able to manipulate such save-objects from Simuletta, the above routines and functions are 
defined. The temp control instructions are used as follows:

-  'init_pointer' is called in preparation of a complete scan through the pointers of a save-object.

-  During the scan 'get_pointer' will be called repeatedly, yielding the pointers successivly.

-  If the pointer is to be updated, one 'set_pointer' will follow the corresponding 'get_pointer', 
   so that the pointer just inspected will be updated. 



Apart from the actual temporaries saved, some additional information must be present in the save-
objects. For the purpose of explanation we will call this additional attribute 'SaveMarks'.
The SaveMarks is some representation of the structure of the save-object, which allows for 
sequential access to all pointer values saved. (E.g. A bit map indicating the positions of the pointers 
in the save-object).

The parameters to the instructions 'get_pointer' and 'set_pointer' are implicit, i.e. they refer to the 
save-object referenced by the most recent call (at runtime) on 'init_pointer', successive calls on 
'get_pointer' scans through the pointers in the save-object, and a call on 'set_pointer' refers to the 
pointer accessed by the most resent call on 'get_pointer'.

For the purpose of explanation we introduce two anonymous variables 'SaveObject' and 
'SaveIndex'.  SaveObject is set by 'init_pointer' and referenced by 'get_pointer' and 'set_pointer'. 
SaveIndex is initialized by 'init_pointer', updated by 'get_pointer' and referenced by 'set_pointer'.   
In an implementation some representation of SaveObject and SaveIndex could be kept in 
dedicated registers or in main storage. The use of the variables is explained in detail below.

   max_temps: The value of this function is the size of the biggest save-object which
will ever occur.

   init_pointer(x): A scan of the save-object 'x' is initialized, i.e. SaveObject is set to refer
to the object 'x', and SaveIndex is initialized.

   get_pointer: If SaveIndex refers to the 'last' pointer of the save-object referred by
SaveObject or no pointer exists in the object, the value none is returned to
signal that the scan of the object should be terminated. Otherwise SaveIndex
is updated to describe the 'next' pointer in the save-object. In case the value
of the 'next' pointer is none, the pointer is skipped, i.e. iterate this description,
otherwise the value of the referred pointer is returned.

   set_pointer(x): The value 'x' is inserted into the pointer variable referred by SaveObject and
SaveIndex. Note that 'set_pointer' does not update SaveIndex.

Important note: Only the object reference part of a general reference is
updated. This instruction is issued by the Garbage Collector during the 
storage compaction, and objects are always moved as a whole.



Appendix – The Complete Syntax of the Simuletta Language

simuletta_program
::= interface_module
::= sub_module

interface_module
::= global module'identifier
    begin < < visible >?  decl_in_interface >*  end

decl_in_interface
::= mnmonic_definition
::= global_declaration
::= constant_declaration
::= record_declaration
::= routine_declaration

sub_module
::= module module'identifier
    begin < < visible >?  decl_in_module >*

    < statement >*  end

decl_in_module
::= module_inclusion
::= mnmonic_definition
::= local_declaration
::= constant_declaration
::= record_declaration
::= routine_declaration

main_program
::= begin  < decl_in_module >*  < statement >* end

global_declaration
::= type  globalid  <  ,  gloalid  >*

globalid
::= identifier  < system identifier >?  < = value >?
::= identifier  < system identifier >? ( repeat'integer_number )

 < = ( value < , value >* ) >?

local_declaration
::= type localid  <  ,  localid  >*

localid
::= identifier  < ( repeat'integer_number ) >?

constant_declaration
::= const  type  constantid  <  ,  constantid  >*

constantid
::= identifier = value
::= identifier ( repeat'integer_number ) = ( value < , value >* )



module_inclusion
::= insert     module_ident  <  ,  module_ident  >*
::= sysinsert  module_ident  <  ,  module_ident  >*

module_ident
::= module'identifier  <  =  external_id'string_value  >?

record_declaration
::= record  record'identifier  <  :  prefix'identifier  >?

<  record_info  >?
    begin  common_part  < variant_part >*  end 

record_info

::= info ''DYNAMIC''
::= info ''TYPE''

common_part
::=  <  type  attrid  <  ,  attrid  >*  >*

variant_part
::= variant  <  type  attrid  <  ,  attrid  >*  >*

attrid
::= attribute'identifier  <  (  repeat'integer_number  )  >?

type 
   ::= integer
   ::= short integer
   ::= range  (  lower'integer_number  :  upper'integer_number  )
   ::= real
   ::= long real
   ::= size
   ::= Boolean
   ::= character 
   ::= label
   ::= entry  (  < profile'identifier >?  )
   ::= structured_type
   ::= object_reference
   ::= attribute_reference
   ::= general_reference

structured_type
   ::= infix  (  record'identifier  <  :  fixrep'integer_number  >?  )

object_reference
   ::= ref  (  < record'identifier >?  )

attribute_reference
   ::= field  (  < qualifying'type >?  )

general_reference
   ::= name  (  < qualifying'type >?  )



value
   ::= integer_number
   ::= real_number
   ::= long_real_number
   ::= Boolean_value
   ::= character_value
   ::= string_value
   ::= label_value
   ::= routine_value
   ::= structured_value
   ::= object_reference_value
   ::= attribute_reference_value
   ::= general_reference_value

Boolean_value
::= true
::= false

size_value
::= nosize
::= size  (  record'identifier  )
::= size  (  record'identifier  :  integer'expression  )

Structured_value
   ::= record  :  record'identifier  (  attrvalue < ,  attrvalue >*  )

attrvalue
   ::= attribute'identifier  =  value
   ::= attribute'identifier  =  (  value  <  ,  value  >*  )

Object_reference_value
::= none
::= ref  (  object'identifier  )

attribute_reference_value
::= nofield
::= field  (  record'identifier  <  .  identifier  >+  )

label_value
::= nowhere
::= label'identifier

entry_value
::= nobody
::= entry  (  routine'identifier  )



expression 
::= factor
::= unary_operator  factor
::= expression  binary_operator  factor
::= if Boolean'expression then expression else expression 
::= type_conversion

factor
::= value
::= variable
::= routine_activation
::= (  expression  )

unary_operator
::=  + | - | not

binary_operator
::=  + | - | * | / | rem 
::=  and | or | xor
::=  <> | < | <= | = | >= | >

variable
      ::= simple_variable  <  (  index'expression  )  >?

simple_variable
      ::= identifier
      ::= var  (  general_reference'expression  )
      ::= object_reference'expression  .  identifier
      ::= structured_type'expression  .  identifier

type_conversion
::=  expression  qua  type

Statement
::= if_statement
::= assignment_statement
::= goto_statement
::= routine_activation
::= built_in_routine
::= repeat_statement
::= case_statement
::= label'identifier :

goto_statement
::= goto  label'expression

assignment_statement
::= < variable  := >+  expression 

if_statement
::= if  Boolean'expression  then  < statement >*
       <  elsif  Boolean'expression  then  < statement >*  >*
         <  else  < statement >*  >?   endif

repeat_statement
::= repeat  < statement >*
       while  Boolean'expression  do  < statements >*  endrepeat



case_statement
::= case  lower'integer_number  :  upper'integer_number

(  integer'expression  )
<  when_list  :  < statements >*  >+
< otherwise  < statement >*  >?

    endcase

when_list
::= when  which'integer_number  <  ,  which'integer_number  >*

routine_declaration
::= profile_declaration
::= body_declaration
::= singular_routine
::= known_routine
::= system_routine
::= external_routine

profile_declaration
::= < global  (  identifying'string_value  )  >?

profile profile'identifier
parameter_specification  end 

parameter_specification
::= < import  <  type  localid  <  ,  localid  >*  >+  >?
    < export type identifier  >?
::= < import  <  type  localid  <  ,  localid  >*  >+  >?
    < exit label identifier  >?

localid
::= identifier  <  (  repeat'integer_number  )  >?

body_declaration
::= body  (  profile'identifier  )
        routine'identifier  routine_body

routine_body
::= begin  <  local_variable  >*  <  statement  >*  end 

local_variable
::= type  localid  <  ,  localid  >*

singular_routine
::= routine  routine'identifier
        parameter_specification  routine_body

system_routine
::=  sysroutine  (  identifying'string_value  )  routine'identifier
        parameter_specification  end 

external_routine
::=  external  (  nature'string_value  , identifying'string_value  )
       routine'identifier  parameter_specification  end 



routine_activation
::= routine'identifier  <  argument_list  >?
::= call  profile'identifier ( entry'expression ) < argument_list >?

argument_list
::= ( argument  < , argument >* )

argument
::= expression
::= ( expression < , expression >* )

built_in_routine
::= object_initialisation
::= temp_routine

built_in_function
::= temp_function

object_initialisation
::= zeroarea (  object_reference'expression  ,  

     object_reference'expression )

::= initarea (  record'identifier  ,  object_reference'expression )

::= dinitarea (  record'identifier , fixrep'integer_number   , 
     object_reference'expression )

temp_routine
::= init_pointer( object_reference'expression )

 ::= set_pointer( object_reference'expression )

temp_function
::= max_temps -- resulting type: size
::= get_pointer -- resulting type: ref()
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